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PREFACE

The main aim of these lectures is to develop the theory of elastic-

plastic flow in sollda, with application to a particular class of P1’ocesses,

namely those in which the dissipation of plastic work cannot be neglected.

Examples of such processes are highspeed impact phenomena and cratering, shock

compression, often shock releaae as well, and exploslve deformation and

welding. An important part of the development is to include the anisotropic

elastic properties of a solid, and for thjs reason the theory applies to

solids In general. On the other hand, it is possible th’lt some of the

results will have limited validity for nonmetals. The secondary aim of the

lectures is to develop a general framework for ductile fracturla, and describe

the current practice in the field. Our theory is incremental in nature and

suitable for integrating along a process in small timestcpl] as is done in

‘hydrodynamlcw computer programs. A notational conflict arose, because in

continuum mechanics the extensiv? quantities are taken per unit mass, while in

thermodynamics they are usuaiiy per unit volume. The contlnu!.lm mechanics nor-

malization i.e. per IJnlt ❑aas, is used throughout, with the result that

uncommon factors of density show up in the thermodynamic equations. For the

first three lectures, I have heavily borrowed from a r9view document by Duane

Ua!.lace.l



LECTURE I-HATERIAL RESPONSE

In this lecture, the basic ❑aterial-response concepts underlying the

entire theory are described in words. Some of the observations on time-rate

effects, and in support of local thermodynamic equilibrium during plastic

flow ,
2

were origir]ally published in Physical Review.

1. Equilibrium and Nonequilibrlum

A system is a quantity of ❑aterial whose behavior we want to study, as

e.g, a cubic centimeter of gold, or a beaker of water. An isolated system is

one for which nothinq flows in or out of the system. If a system remains iso-

lated, it will presumably reach a state which remains constant in all its

❑acroscopic properties. This 1s an equilibrium state. Let us for the moment

consider only states for which the forces applied to the system are isotropic,

and make a partial list of the macroscopic properties of

state: V = volume, P - prcsswre, U = internal energy, T =

entropy.

the equilibrium

temperature, S =

Equilibrium thermodyniimica 1s the study of progesses by which a

material (or several materials simultaneously) can pass from one equilib?iurn

state to another, along paths which are constrained to pass only through equi-

librium states. The primary physical laws invoked are conservation of energy,

and the exlatence of an exact differential dS; the rest of equilitirlum ther-

modynmnios is (almost entirely) mathematics. When the stress is isotropic
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pressure, there are only two independent variables, which ❑eans two vari-

ables completely specify an equilibrium state of a given material. These

variables can be any two from the above list, or two combinations of them, or

other extensions. Take for example V and T as the independent variables.

Then for all possible

lowing form hold: P -

state” is sometimes

equilibrium states of a ❑aterial, relations of the fol-

P(V,T), IJ = U(V,T), S = S(V,T). The term ‘equation of

used to denote the above equation for the pressure. A

❑ ore general usage of the term, and that which will be followed in the

present work, 1s to denote any or all o? the information contained in the get

of equationa above.

To ente~. the realm of nonequillbrium states and processes, it is help-

ful to think in terms of statistical mechanics. Consider a monatomic nearly-

ldeal gas; ❑entally subdivide the space occupied by the gas into a large

number of volume elements, each with the same volume. Each element contains a

large number of atoms, and can be treated at! a statistical subsystem. The im-

purtant statistical measure of a subsystem is the distribution f(~) of the

atomic ❑omenta j. The equilibrium distribution is llaxwelllan, with a tempera-

ture T: f(~) is proportional to exp(-B~2/2M), where 6 = l/kT, k is Boltzmannfs

constant, and hi is the atomic mass. Hhen the gas is in equilibrium, the nass

and temperature are the same for each element.. Hhen the gas is not in equi-

librium, the momentum distribution can be anything. If the distribution is

not at least approximately klaxwelllan, then the temperature cannot be

defined. However, even when equilibrium-thermodynamic quantities such as

temperature are not defined, mechanical quantities are aiways defined. The
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❑ost important ❑acroscopic mechanical quantities representifig e-ch volume ele-

ment, which in fact are just the zeroth, first, and second moments of f(~),

are the total mass, total linear ❑omentum, and total energy. If the gas is

tho~ght of as a continuum, these quan~lties translate into local fields r-epre-

senting density, fl~ld velocity, and ener~y density.

We can now define nonequilibrium states which are “close to

equilibrium.v Any element of the gas Is close to equilibrium if its ❑omentum

distribution is close to Maxwellian; specifically this means that f(~) -

exp(-B~2/2M) + 6f(~), where the only restriction on 15f(~) is that it is small

enough to be treated as a perturbation. aut this will be the case only if the

spatial and temporal variations of the mechanical quantites, the density,

fluid velocity, and energy density. are s’~fficiently small. It is important

always to differentiate between mechanical and thermodynamic quantities, and

to r’emember that equll~brlum thermodynamic quantltes can be defined only for

states which a?e closa to equilibrium. A good exercise would be to explain in

one’s own words why this 1s so.

Irreversible thermGdynamic9 1s the study of procesges which pass

through ncmequlllbrlum states, but only those which are close enough to equ!.-

llbrium states so that the equilibrium-thermodynami c processes are

characterized by the Iollowing properties.

(a) A ‘drivlnc fGrce” is present, which causes a flow tnat tries to

oanccl the drlVing forc~. The force-flow relatlon 1s called the constitutive

relation, and the material properties which enter this relation are cal~e~

oonstitutive properties. Tho constitutive ralatio,? couples to, and alters

parts of, the ~quat.ion of state.
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(b) Dissipation is present (Uen@ration of entroPy). The work done by

the driving force against the flow is alwaya at least partially dissipated,

and usually it is totally dissipated. The equation for entropy increase ac-

quires a dissipation term in addition to the hezt flow term.

Consfder a material in which there is a local te!nperature gradient;

heat flows,, in an attem?t to ?ancel out the temperature gr9dient. A common

constitutive relation sets the heat current proportional to the temperature

gradient. The coefficient of proportionality, the thermal conductivity, is a

constitutive property of the material. Consider a beaker of water, stirred

gentl,y with a stirring rod, and then isolated. Viscous stresses are present,

working against the velocity gradients, and the macroscopic mechanical mot.ton

of the water gradually dies away, as it is turned into heat. The linear rela-

tion between viscous stresses and velocity gradients is the constitut,lve

relation, and the viscosity coefficients are constitut!ve properties of the

water.

It is important to remember that constitutlve properties of a ❑aterial

are entire~ separate, from equilibrium properties;—. that equation-of-state data

does not contain any information about “!onstitutive properties of a material.

In short,, the constl~’ltive relation, or constitutlvf? behavior, of a material

describes th- dissipative forc9-flow part of an irreversible-the:”modynamics

process.

The present work 1s concerned only with processe9 in the irreversible-

thermodynamlc reqlme: equlllbrlum-thermodynaml c! quantltes can lluays be

defined, at least approximately. A point of usage needs to m addressed. It
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seems that physicists are raissd tc think of adiabatic, when used in the ther-

❑odynamlr sense, as ❑eaning isentroplc. Cnglneers generally use Sdiabatic to

❑ean “without heat flow.” We could simply abandon this word in the present

work, except that we will have ❑uch need for the adiabatic elastic moduli,

which of course are isentropic elastic ❑oduli. The following definition ‘dill

therefore be followed: adiabatic ❑eans isentrop”.

2. Elastic Response and Plastic Response

The significant property of condensed matter, which ❑akes it condensed,

is the dominance of ~orces within the material. For an ordinary solid or

fluid composed of atoms, or ❑ore accurately, composed of ions and electrons,

the force3 c!erive from effective potentials between the ions. These forces

are elastic forces. Since the effective ion-ion potentials operate through

the .lectrons, they ar? ‘instantaneous” potentials, as far as the present

work is concerned. There are also forces arising from thermal energy in a

mp~erial, e.g. t%~ thermal excitation of electrons and phonong. Thermal

forcos can remain close to equilibrium as long as their spatial and temporal

variations are slow compared to relaxation lengths and times within the

electron-phonon sy~tem. Such relaxation lengths and times are quite short,

being measured in terms of lattice spacings and picosecond, respectively.

The elastic foiceg and thermal f’orce.g taken toaether are called thermoplastic

forces, and for solids we have the following conclusion: stresseq are sup-

ported by

be a \alid

ohange.

the thermoelastlc forces, and local thermoplastic equilibrium w!.11

approximation up to very high spatial and/or temporal rates of
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When an anisotroplc stress is applied to a solid material, a ❑ultitude

OS processes begin, all of them act’,ng to reduce the stress. Sane of these

proce=ses can be effective onJy on geological time scales; others are impor-

tant in mirutes or days. In the present work, we are interested in rather

fast processes, say things which happen in one second or less. We will not be

concerned with any stress relaxation ❑echanism which operate9 on a slower

t.imescale. We will be concerned with the ❑echanisms of plastic flow and duc-

tile fracture. Plastic flow does not have to be due to dislocations; however,

it usl lily is, and we will often use dislocation cor,cepts in examining the na-

ture of p stic flow.

Consider a small reg,lon of a solid ❑aterial, and suppose there is an

anisotropic stress in the region, which results from forces applied by the

surrounding material. There may be a dislocation in the region, or one might

be generated; in any case the dislocation moves In such a way as to reduce

the local anisotroplc stress. Transforming this picture to the language of

irreversible thermodynamic:J, we say that the stress drives plastic flow, and

that for a giver ❑aterial in a given state, the material constitutive equa-

tion specifies the plastic response to any applied stress. Me have thus

arrived at an important point of logic in the present theoretical construc-

tion, stated as follows: For plastic flow within a solid material, at all

times and locations, the sl;res~?s satisfy two separate Conditions, V:z. the

equilibrium thermoplastic equations, and the plastic constitutlve equation. If

ductile fracture is also taking place, a constitutive relation for the frac-

ture damage is also obeyed.
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There Is a subtle discord between the nature of plastic flow and the

customary ‘textbook picture” of irreversible processes. This can be il-

lustrated with a simple example. Suppose a shear stress ~ 19 applied to a

solid, and the solid deforms elastically for ~ < To. and at To the solid

begins to flow plastically. The irreversible-thermodynamic driving force is

This Constitutive behavior cannot be represented by a linear
“LO”

phenomenological law, according to which the driving force is zero in equi-

librium, and is a linear function of some measure of the departure from

equilibrium. The essential nonlinearity of plastic constltutive behavior has

led to the statement that ‘plastic flow cannot be treated by ~rreversible

thermodynamics. n This statement can safely be tgnored. But let us continue

with the example, and ask about the connection between time-rates and revers-

ibility. The customary picture is that if you ❑ake a process slow enough, it

will be arbitrarily close to equilibrium; that. slow is r~versible. Is this

really true? In an ordinary solid, adiabatic elastic waves can be transmitted

at very high frequencies, under near’-equilibrium conditions. On the other

hand, in driving plastic flow, the shear stress can be adjusted ~a that the

plast,ic strainrate is arbitrarily small, yet the process is still

irreversible: the driving fOrCe To is finite for an arbitrarily slow process.

This result allows t,he following important conclusion to be made: The ther-

❑odynamic reversibility of a process is not determined by its rate.

So far, we have ignored the heterogeneous nature of plastic flow. Inl

fact, plastic flow is intrinsically heterogeneous, and what is worse, it is

heterogeneous on several different length and time scaleg. The finest scale

of h~terogeneity is that of a single dislocation. A dislocation is a line
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defect, surrounded by a nonuniform elastic strain field, Uhen a dislocation

❑eves, it presumably acts as a source of mechanical excitations, and with the

appropriate relaxation time, this ❑echanical energy becomes thermalized to

heat. Larger scales of heterogeneity are associated with dislocation sub-

structure, the networks and cells and so on. On this large scale, plastic

instabilities may develop during the course of a process. For example, shear

bands may form, within which the plastic flow may tend to become localize..,

The question arises, hcw is the heterogeneous nature of plastic flow to be aL’-

dressed by irreversible thermodynamics?

First we will simply assume that the finest scale of heterogeneity can be

ignored; that single-dislocation ef~ects can be

whether the mass element contains only a few

within an active shear band. There are two

averaged for ~ mass element,

dislocations, or is located

ways in which larger-scale in-

homogeneities can be treated. The first way is simply to resolve the

inhomogeneities which occur in a given flow process. After all, the

continuum-mechanic and irreversible-thermodynamic theory is a local field

theory, and applies in principle to spatially and temporally inhomogeneous

processes.

An alternate procedure, which entails a sacrifice of resolution on a cer-

tain scale, is to r~Flace a certain type of !nhomogeneity by a homogeneous

model. In this way, an additional field variable, or parameter, is introduced

into the continuum theory, and the modeled lnhomogeneity formally disappears.

It should alwtiys be remembered, however, that the model has to be consistent

with the basic theruroelastlc properties of the solid. For example, consider a

~lngle crystal with a single straight dislocation; apply a shear stress 20
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the zrystal and the dislocation ❑eves. Now replace the whole siip plane o!’

the dislocation by a shear band, and apply the same shear stress. The stress

is supported elastically, with the same elastic stress-strain relation in both

cases; the ~nly difference in the two cases is the plast!.c constitutive

relation. Hence, the appearance and growth of shear bands can be ❑odeled

homogeneously, by using a combination of plastic constit~tive relations,

together with a local field va~iable denoting what part of the total plasLic

flow is due to the shear bands, Another example is the growth of’ voids in a

metal under tension. A single void contributes to the flow problem in the

following way: plastic flow proceeds around the void’s strface, as the void

grows, and the cross section of the void does not support stress. These et’-

fects have been modele~ in a mann=~ consie~ent with the thermoelastlc

properties of a metal, in a calculation of necking and ductile fracture. 3

A~~ fluids are presumably viscoeiastic. This means the fluid response is

viscous at low anl~ moder;~te strainrates, but the response is elastic at tjigh

stralnrates. For a simple monatomlc fluid, the elastic re~ime begins at

13 -1
strainrates around the inverse mean-atomic-vibration time, or 10 s at ot’di-

nary temperatures and pressures. The elaatic response in a fluid is due to

the interatomic potentials, and does not occur in a gas, where all interac-

tions are represented simply by two-particle elastic collisions. That a fluid

and a gas arc? essentially different is demonstrated by the behavior of the

visoos~ty, which decreases with temperature for a fluid, and increases wjth

temperature for a gas. The onset of elastlc response in a fluid at high
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strainrates suggests that vi:~cous stresses cannot be arbitrarily large; this

is certainly the case in the shock process, ‘ag will be discussed in later.

When we ;peal: of a viscous fluid, we ❑ean a real fluid (a viseoelast~e

fluid) which 1s operating in the viscous regime. The most universally Dopular

❑yth in high-strainrate materials response today is that an elastic-plastic

solid is equivalen”c to, or approximately equivalent ho, a viscous fluid. The

difference in constitutive behavior between an elastic-plastic 8011d and a

viscous fluid is not trivial, it is vital. Any experiment performed on a

solid, and interpreted with viscous !?luid theory, wtll indicate an enormous

‘viscosity, ” and one which depends intimately on the experiment itselr. To

add te the gonfusion, there is also the

because this term Is cont&ined in a

❑odels, does not mean that any solid or

nvi~coelagtic so~id.”popular Just

textbook, In a list of constltutive

earth behaves this way.
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LECTURE ll-CONTiNUUfl MECHANICS AND ANISOTROPIC THERMOELASTICITY

Ir, this lecture we assume the student has a basic kncwlcdge crf the

tcpics, either from prior study or other lectures. We will list equations to

establish notation and will point out special features that are important to

nonequilibrium thermodynamic. We treat in abbreviated form anlsotropic and

finite s~rain elasticity with which the student may bc unfamiliar.

1. Mechanical Equations

The Eulerian form tl:e the equation for conservation of mass is the

followlng:

al)l:t]; + a(vip)taxi]t - 0 , (2.1)

where t !.s time, p is mass per IInit volume, ~ is the ve,-tor of Eulerian posi-

tion coordinates, and vi 1s the lth Cartesian componei~t of the particle

velocity. The ter’m “partlcle~’ means a small piece of the material which con-

tinues smoothly into its neighbors and does not imply that the material is

b~okon up into pieces. Double indices are to be summed over. The Eulerian

position eoordlnaLeu are simply the coordinates in a coordinate frame fixed in

space through which the material moves. This equatiorl describes how th?

material’s mass compresses or expands as the material moves. The momentum con-

servation equation appeara as:



‘here ‘ij
is t}le Cauchy stress tensor (referred to real areas in

coordinate system), and ~ is the Cartesian Lagrangian coordinate

15

(2.2)

the Eulertan

which gives

the position of a particle at some inltital time. Thus, a pal’title is labeled

uniquely by the ~ it had at Lhis initial time. The partial with respect to

time holding ~ fixed means a material derivative Gr one which follows the k~r-

ticle along its path. ‘Jhis equation is si!nply Newton’s second law in

continuum form: “force o time rate of change of ❑omentum.’” This equation is

given in the mixed Eulerian-Lagrangian form commonly used in computer

calculations.

One can define

be confused with

a mean compressive stress F a3 - (1/3) T
ii”

F is Ilot to

the “prcs:dre”, however; which we reserve to mean the

“thermodynamic pressure.” The pr’essure 1s defined only when the stress Leneor

‘s ‘Sotropic’ ‘ij - p 6iJ’
and when the material is in loczi thermodynamical

equillbrillm. The minus sign is present boaause stresses are outward forres,

while pressure 1s a force inward on a body. “9nce, even when local ther-

modynamic equilibrium obtains, ~ 1s not the “pressure” if ~
ij

is anisotropic.

The concept of thermodynamlcal pressure 1s not then general enough to fit the

altuation. For example, P is always a single valued function of V and T, but

~ can be made to take on ii contlnuoua runge of valuen for fixed V and T by ad-

justing the components of Yij.

The energy belonging to each mass element 1s divided into two parts, the

translational kinetic energy, (1/2)~2 per unit mass and the center-of-mass or



internal energy, E per unit ❑ ass.

energy of the mass element is

d[(l/2)m~2] - mv
J

~vj/@ dt

16

The increase of translational kinetic

. (2.3)

A change

done and heat

conservation,

sy9tem, or a

fluid, it 1s

in the center-of-maMs energy is l~,vided into two parts, work

transported. Before introducing the equation for internal energy

we provide a description of heat. Heat is tkle excitation of a

mass clement, at fjxed configuration. For an atomic solid or

tt,e mot.ional energy of the atoms in the center- of-mass frame;

in a metal, the excitation of conduction electtons is also included. Heat is

defined withol!t regard to thermo~ynamic equilibrium. Also, there is no

(9ignifiC&nt) tranSPO1t of mass or momentum associated with heat transport.

It should be recognized, however, that the real operational definition of heat

is not contained in these words, but is contained in the constitutive equation

for heat transport which one uses in any given calculation. Pome common f’ol’ms

for this equation are discussed later.

Tile equati~n of internal energy conservation, for a single material par-

ticle moving in the solid, is the following:

p ~~/2t]~ 0 TIJk~J/at]~ - ?J~/ax~]t ,

where E 1s the internal energy per unit mas~, and ~ 1s the Eulerlan heat flux

veotor,
Ci.j

is the infinitesimal strain tensor defined in terms of lnfintesi-

mal Eurlerlan displacements u from the current conflRuration ns follows:
J

(?,4)
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(2.5)

‘e ‘iii ‘efine ‘ij
the total in~ernal

we call dU. The

to be auiiax .
j ‘he ‘et-m ‘nvO1ving aEij

in equation (2.4) is

mechanical work done on the particle per unit volume, which

term involving J,
.!

volume for the particle, whic,l we call

be more simply expressed as: dE = dW +

crease of the particle.

is the total increase in hear per ‘Init

dQ. The above Lagrangian equa?ion ca,~

dQ, where dE is the internai energy in-

We need to emphasize an aspect of the Incremental work dki: this is work

done on a mass element, by its surroundings, through the action of str’esses.

Nothing was sa!d about dU being conservative, or reversible, and in !’act it

generally is not. The applied stresses can drive plastic flow in a solid, or

viscous flow in a fluid, and these are both dissipative processes. The work

terfil can be partially or

sible to keep trac!f of

integrating the :erm cIQ;

totally dissipative.

the heat content of

dQ represents the net

element, but dU acts partially or totally as a

Because of this, it is not ?oti-

a given mass element by simply

heat transported il]to the mass

source term for heat, as well.

An important point is that the continuum-mechanic conservation equations

(2.1) - (2.4) above hold for any material with any ronstitutive behavior; they

apply to dissipative processes. They were derived from very basic physical

principles which always hold. They don’t need to be ‘corrected. n The quan-

tities they contain are general mechanical quantities which are defined

whether or not thermodynamlcal equilibrium holds.

2. Thermoelaatlclty
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We will be concerned with thermoelaoticity for a solid of arbitrary crys-

tal symmetry in the presence of anisotropic stresses. For irreversible

thermodynamics, we need the assumption of local thermodynamic equilibrium, in

which the thermodynamic variables are fieldg, but all the equilibrium rela-

ttons hold locally. In other words, we assume that if the material is

subdivided finely enough, the equilibrium thermodynamic relations wil~apply

to tke pieces individually with suitable terms added to account for irrevers-

ibility. Equilibrium thermodynamics assumes that the thermodynamic quantities

are uniform throughout the solid, In irreversible thermodynamics we assume

that quantities are uniform locally. The thermodynamic relations Kill hold in

the rest frame of the material.

It is worth mentioning that the equilibrium thermodynamic equations are

independent of time. They involve only differences between equilibrium sLates

ir, which time 1s not involved.

With enisotropic stresses, an equilibrium thermodynamic state can De

specified by the elastlc configuration, or by the stress tensor, plus one more

variable such as entropy or temperature. We will take the independent vari-

ables to be the elastic configuration and the entropy. Since it will be

necessary eventually to distlngu!~i, between elautic and plastic strains, we

will uae a superscript e to denote elantic strains. The incremental elastic

‘train ‘radients %
carry the ourrent configuration ~ into the next con- ‘

figuration ~ + d;. We do, in fact, include finite straino but introduce only

infinteslmal Btraln ohanges In the theory. The incremental entropy dS repre-

sents entropy from all sourues. It includes that from heat flou hRrJ and will

be generalized in the nonequilibriurn case to include dlaslpatlon. Thus, the
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independent incremental variables are the set (dueiJ ‘
dS) . The symmetric elas-

‘ic ‘trains % are d%
- 1/2 (due

ij
‘).+ ‘“Ji

Th6 rotations are to be

thought of as rigid. Elastic strain does not contribute to rotation, nor does

plastic strain. Hence, rotation increments are denoted simply du
ij ‘

where

‘Kj
= 1/2 (du - dllji).

ij
Note this implies that the displacement gradients

are not entirely elastic: the antisymmetric part of du
ij

is rigid rotat!.on.

Using the elastlc an rotation tensors, the complete set of independent vari-

ablec becomes

In crder

derivatives,

e

“ij’ ‘Wij’ and ‘s”

to simplify notation, we will omit the indication, in partial

or which variables are to be held constant. This can be done

because we use a ain~le set of independent variables; any partial del’ivative

is carried out with the remaining independent variables held fixed. In our

e
algebra, we wlil take all c

iJ and ‘ij ‘o be
ndependent variables with the

e
constraint ‘hat clj ‘s ‘Ymmetric ‘n ‘J and ‘iJ ‘g anti-gymetric”

In thermoelasticity, all strains are elastic and we can write the energy

increment equation as:

p dU N ~,,dc~, + pTdS . (2.6)
lJ lJ

This equation does

under rlgld rotations.

‘ot contain‘Ui,j’ which indicates that dU ia invariant

The cuscomary exFresslons for stresses and tempera-

ture, as energy derivatives, follow directly from equation (2.6/:

‘lj
= p aulace

lj ‘
(2.7)
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(2.8)

We will express increments in I
iJ

and T in terms of’ those of the inde-

pendent ‘~arlables, and break the thermodynamic heiarchy there. We will

conaid+ “ the coefficients in the resulting equations as known, from exper’imcnt

or thee etically. These equations, then, are the ones to be used in actual

calculations.

A subtle but very important point arises. Both sides of a thermodynamic

equation are evaluated at the same state and both sides are true for any ther-

❑odynamic state. Hence, in principle the equation can be Differentiated,

since differentiatl~n is just a process of taking differences between

neighboring states. Howevsr, equat:on (-.7) for T
lJ

is not a general

relation; the left hand side is ~
i.1 Only ‘hen ‘he ‘trains Cij are ‘eroo ‘ence

it cannot be simply differentiated with ,’espect to this quantity. The wrong

answere results. A proper general equation is given in reference (4) where the

proper way to differentiate this equation is degcribed. The algebra 1s not Loo

hard to follow, but too lengthy to be included here. The result, alon~ with

the re9Ult fOr StPe99 changes with rfJtatiOn, !s written schematically as

a~l.j’a% = %.jkl *

a~ij’aukl
- 1/2 (T 6 6),

11 Jk - ‘ik5jl + ‘[.jl*ik - ~jk 11

(2.9)

(2.10)



‘here‘ijkl ‘s

tensor changes

and kl but not
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an adiabatic stress-strain coefl’j.cient. It tells how the stress

when the strains change infinitesimally. It is symmetric in ij

with respect to interchanging ij and kl. This equation does not

irlclude rotations of the mass element. If the ❑ ass element has in fact

~otated, then the stress has rntated with it. Hence, components of stress in

the laboratory system are changed, and it is this change which equation (2.10)

gives. To give added insight into the B
ijkl

coefficients, we write them in

terms of the special second order elastic constants, C
Ijkl:

‘ijkl = Cijkl
+ 1/2(1

ik6jl + ~ild.jk + ~jkdil + ‘Jl%k
- 2Tij6kl) . (2.11)

‘he Cijkl.
are defined by p

‘ero ‘lj’ ‘here ‘uj are
defined by

2
au ‘%jaqkl

evaluated at the initial condition of

the symmetric fini~e strain parameters or Murnaghan

‘Uj - 1/2 (u
ij + ‘jl + ‘ki”kj) “

(2.12)

‘ij
is the displacement gradient auii~x

J
and displacem~nts are here not

limited to lnI’int9simal displacements. When the stresses are zero, the C
ijkl

oorregpond physically to what one 1s used to thinkind of as el~stic constants

in the Infinteslmal strain case. But when stresses are nun-zero, they can be

different. Equation (2.11) is derived in reference (4). Some idea of why the

ut[’es~ dependence should occur in B
ijkl

is ~iven by the following simple

example. Con81der a long rectangular bar of unit cros8 sectional area and of

lnltial length Lo polntlng along the x-axis. We stretch lt quasletatically to



length L, keeping the cross-sectional area constant.

in the same condition it would be

sectional area that experienced a

this condition of the bar state

lf it were part of
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Incidentally, the bar is

a solid of infinite cross

uniform x-displacement to length L. We call

1. The total force on the bar is the same as

‘he ‘tress all
normal to bar’s end and can be simply related to the stretch of

the bar ,L - Lo, by the equaticn u,, = k {L - Lo) where k is z “spring

constant.” lie have used Voigt notation Ir, CIl~ . We now stretch the bar further

by the infinitesimal length AL which inc~eases the stress by Ao
ij

= kAL. The

Infinitesimal strain experienced by the bar in this last stretch is cl, u AL/L,

with all other components being zero. Hence, we

for the bar of length L ( st~te 1) by dividing

C{l coefficient 1s defined as the usual elastic

its Initial unstressed condition. One can take

now can get the B,, coeffiuent

‘Uij
by cl, to get kL. The

coefficient when the bar is in

two oartials uf the potential

energ.t per unit volume 1/2 k (L’-Lo)z/Lo with respect to the infinitesimal

‘train ‘if
referred to the initial condition to obtain C’

11”
This strain is in

fact (L’-Lo)/Lo , which enables one to easily obtain C’
11

*1 k Lo. Finally, we

‘eWrite ’11
=kLask Lo+k(L- Lo), which is easily seen to be C;l + u,,.

This completes the example. The result can be seen to follow because the

infinteslmal strains used to define B,, and C;l are referred to different

configurations. We note that in equation (2.11) above which relates B
ijkl “o

Cijkl ‘nd ‘ij’ ‘he Cijkl
is ceferred to the current positions or to state 1,

‘bile Cil
above was referred to state the initial condition. The C{l neverthe-

less fits into equation (2.11) when specialized to this simple case. The

resolution of the puzzle is that C’
11

equals C,, for this simple example.
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lie continue the program of calculator, g derivatives required to c~nstruct

equations fo, d~
ij

and dT. The anisotropic Gruneisen parameters Y
ij

are

defined by

aTij’as = - < “ij “ (2.13)

‘h” ‘ij
represent the thermal energy contrlbutiorl, jr heat contribution. to

the str’essm, as can be seen by rewriting equation (2.13) in the form

PyiJ - - aTij
/au]n . (2.14)

The subscript n ❑eans at constant elastic configurati~n. The heat capacity St

constant configuration is Cnl, defined

derivatives of the temperature are

aT’aui.j - 0 “

One can understand why Y
ij

appear3 in

‘ion ‘or aTij
when these equations

by a-fias o TIC Finally, the strain
n“

(2.15)

(2.16)

both the equation for aT and the equa-

are expressed in terms of partlals of U.

Interchanging the order of differentiation yields the same derivative of U in

both cases.

Now we can write down the final equatiGns:



‘Tij = ‘ijkldc:l + ‘T;j - ~yij Tds s

dT .
- %% + ‘ds’crl “
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(2.17)

(2.18)

As an interesting exercise, one might think of how, for a single crystal

of tetragonal or lower symmetry, one would measure C, and also how one would

measure C Show that a measurement of Y is contained the the first experi-
n“

ment, and a ❑easure of’ Y
i.j

is contained in the second experiment.

A common circumstance in treatises on elastic-piastic strain is that only

Hooke’s law Is considered. In the present work, the first term on the right

of equation (2,17) is Hooke’s law, in differential form. Omitting considera-

tion of the rotation term, there Is still another contribution to equation

(2.17), and that 1s the term in TdS. That term is necessary for the

‘Pacification ‘f ‘Tij ●

Even if one changes variables, the equivalent of the

TdS term will always be present . In other words, stress can never be ex-

pressed in terms of strain ale:.,t-.

3. Approximation of bwll Anlsotropy

Thermot !astii:~~ ~ was developed in the first place to describe ciperi-

ments, especidl.ly stress-strain experiments and wave-propagation experiments,

on single cry: als in the presence of applied stresses. Applications of ther-

moelast~”fty can >?come qzite complicated, especially for crystals of low

Symme(!’y. On the other h.md, in plastic flow experiments, :L 1s often pos-

sible to consider the flol!d ufider stud: as nearly isotropic. A

polycrystalllne -ggregate, for example, is approx lately isotropic for many



purposes. It is therefore useful to simplify the therrrkoelastin
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equations for

the case of an isotropic solid. Of course, as soon as an anisotropic stress

is applied, the solid undergoes anisotroplc elastic strain, and in this stata

the solid is not isotropic. But if the anisotropy of the elastic strain is

small, then the ❑aterial anisotropy will be small, and this will

of ovr approximation. Ultimately, we rely on plastic flow

anj.sotropy of elastic gtra~ng small, or equivalently, to keep the

be the basis

to keep the

stress close

to a pure pressure. There will always be some solids for which the approxima-

tion is not acceptab~e.

Tt,e small-anisotropy approximation consists in replacing the second-order

thermoplastic coefficients C~, Y , and i3
i.j ijkl

by what they would become if the

anisotropic strains were changed to Eave the same volume dilation

other strains. The approximation is easily visualized in terms of

librium thermodynamic process. While the process goes along a

arlisotro?ic-state apace, having volume V and entropy S at any point,

with no

an equi-

line in

a unique

image point moves along a line in isotropic-state space, always having the

same V and S. The second-order coefficients are evaluated at the image point.

The approximation leads to the following replacements: C +C*Y
n ij +

Y6
lj

, and the B~+kl are replaced by the isotropic BaO, which have the follow-

ing symmetry:
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‘1 1 ’12 ’12

’12 ’11 ’12
0

B
12 ’12 ’11

Bqli o 0

0 0
’44 0

00
’44 ‘

where we have written B
ijkl

in the Voigt notation form B where the Greek
aB

indices take valueg I-6 which correspond to the index pairs xx, yy, Zz, yz or

zy, xz or ZX, and xy or yx, respectively. This replacement is allowed because

‘ijkl
is symmetric in ij and symmetric in kl. There are only two indep~ndent

B because of the additional relation B44 - 1/2 (B,, - B12) . One can ex-
at3’

press B,, as A + 2P - P, where P is the pressure of the isotropic state and A

and Y are the Wallace Lam~ elastic coefficients. B4U is equal to p - P.

We will write the equations for dU, dl
ij’

and dT in the small anisotropy

limit. It will be convenient t~ change the stress variables from T
ij

to the

aet “ ‘ij ‘ “here ‘he ‘ij
are stress deviators defined by

‘ij - ‘ij + ‘dij “ (2.19)

We will also use conservation of mass in the form d lnV R dc~l + dc~2 + dce
33”

This equation introduces a new notation, in which CartesIan indices are writ-

ten as numbers 1,2,3, and repeated numbers are not summed. There are times
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when the algebra is simplified by enumerating the Cartesian indices, and ex-

plicitly writing out all the terms in a calculation.

equations are the following:

dU = -~dV + TdS + Vs dce
ij ij ‘

@ . - B d lnV + pYTdS ,

d’f.- YT d lnV + TdS/C ,

‘sl 1
= 2G[dc~1 - (1/3)d lnV] + ds~l ,

\

‘s12 - 2G ‘%2 + ‘% ‘

where the remaining diagonal and off-dlagon~l stress

obvious relabeling of (2,23) and (2.24), respectively.

are

WI
- 2(s12d(ti12 + s13du13) ,

d9Y2 ~ (s22 - s,1)du12 + s231u13 + s13du23 ,

The small-anisotropy

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

deviators are given by

The rotational terms

(2.25)

(2.26)

and the remaining rotation terms are given by cyclic permutation of indices in

(2.25) and (2.26) above.

Onae again, oonslder an equl.librlum thermodynamic process, in whloh the

solid moves along a line whose points are specified by (~,S), while its image

moves nlung a oorrespondlng ltne speolfled by (V,Si. The imuge 1s undergoing

a PrOoess in isotroplo-s~ate s~aoe, mu hence is governed by the equatlona of
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thermodynamics. Let us use the subscript 1, tor isotropic, to

denote variables belonging to the image. Then comparison of the small-

aniuotropy equations with their isotropic limits, and remembering that V(;) =

V, gives the results

F(;,s) - P1(V,S) , (2.27)

T(i,S) = T1(?,S) , (2.28)

UG,S) - U1(V,S) + L@,s) , (2.29)

where UA is the anisotropic elastic energy of the solid, and 1s given by

UAG,S) - J Vsif% “ (2.30)

The integral is along the path of tne process, from the initial state to the

ourrent state. The above equations show that the approximation of small

aniaotropy reduces the thermoplastic prooess to a l~minimally anisotrOpiC” one:

the mean oompresslve stress and the t,emporature car) be obtained from the

isotropic equ~tion-of-state state, and the presence of anisotropy is contained

only in the exlstenoe of nonzero stress deviators, and of the anlsotropic

elaatlo energy. Of oourso, when thermoelast.lcity is coupled t.o continuum

meohanlon, the presenoe of those anlaotropiu terms will affect the course of

the prooeae, at eaoh tlmeatep.

As an exercise, the student oan lmaglne how, for a given polyorystn~llno

sol!d, he would make the best currently-poaalble eetimat,e:! of the quantities
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B, C, Y, and C, for pressures up to 100 kbar (105 atmospheres) and for tem-

peratures from room temperature to melting.
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LECTURE III - PLASTIC FLOW AND IRREVERSIBLE THERMODYNAMICS

In this lecture ue emphasize the irreversible thermodynamical aspects of

plastic flow. Me assume general knowledge of the yield and flow conditions,

but give a summary of the Prandl-Reuss-von Mises theory for completeness and

to establish the notation. Some standard textbook references for this thery,

5
which is the simplest for isotropic solids, are the %orks by Hill ,

Mendelson6, and Kachanov.
7

Techniques for computer calculation of elastic-

8
plastic flow problems irI one- and two-dimensions are discusged by Wilkin~.

1, Plastic Yield

Before describing the plastic yield condition of von Mises, we discuss a

few useful aspects of sitress in a solid. Since the stress tensor T
ij

13 a

real symmetric tensor, a coordinate system exits, called the principle axis

system, in which the stress is diagonal. In this axis system the three

diagonal element~ of the stress tensor oan be taken as the coordinates of a

vectorl i.e. the stress can be represented aa a vector. Glvon a plane, the

stress acting on it can be resolved into a ~ormal component and a &anqential

component. In principal H’ es, the spherical stress line (also called the

hydrostatic line) is the octahedral .Ilne 71, = T22 - 133, where thoqe diagonnl

components are to be plottod as a vector ue described nbove. Pianos perpon-

dloular to this llne (ootahedr’~1 plane~) are planes of conetflnt sphorlc~l

stress, whlnh is oonstmt moan compros~lve etreas In our notation. An ar-

bitrary stress 1s decumposnblc into a pro.jeat,lon onto tho sphoricnl strasfi

lir)e, and a projection onto tho ootnhodr’ul plane, in thla principle axis



space. In our notation, these projections are proportional to the mean com-

pressive stress, and the shear stress. Specifically, the stress vector In

principal axes has”the lengthy (~~1 + T~2 + T~3 ), has a projection of length

- 43 ~ along the spherical stress line, and has the the projection of length

i(2S2) in the octahedral plane, where S2 is the second invariant of the stress

‘eviators’ ‘“2) ‘Ijsij”

The concept of yield is as follows. If the stresses applied to an

elastic-plastic solid are increased from zero, the response of the solid is

initially elastic, and when the anisotropic stresses reach a certain “point,”

plastic flow begins. The point reached is a point on the “yield surface. ”

The yield surface depends on the state of the solid when the experiment is

performed; it depends, for example, on the temperature, the pressure, and the

dislocation density. For the moment, let us consider merely the stress de-

pendence: the yield surface is glVE!tI by an expression of the fOrm f(T
ij)-””

For an isotropic solid, the yield surface should dep6rld on the stress only

throu,gh the rotational invarlants. Frlom III(’ decomposition of the stress in

principal axes, and arguing that the yield surface should not depend on ~ ,

because it is the anisotropic ~ of the stress that drives plastic flow, one

expects the yield surface to depend only on S ,
2

This is the approximation of

von Mlsesl yield occurs when the component of tangential stress on the oc-

tahedral plane reaches a fixed va!ue,

In the present work wo define a rotationally invariant effective shear

stress I, acoording to

(3.1)



where I is equal or greater than O. The von Mises

K, where K is a material property which determines

material.
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yield condition i9 then r -

the yield strength of the

2. Plastic Flow

The plastic strain (or flow) will be denoted by a superscript p, as dcp .
ij

For a process in which elastic and plastic straing are going on simul-

taneously, it is possible to add the two kinds of strain in inflntesimal form.

‘he ‘Ot&l 3train “IJ ‘s ‘hen ‘% + % “
Since the rotation 19 rigid, in-

volving neither elastic nor plastic strain, increments of the displacement

gradienta are

(3.2)

the

~!ow a problem arises. Consider the transformation a, which transforms

initial configuration I to the current configuration ~, auctl that the

function ai(~) gives xi .
‘he ‘unctions alj

(~), defined by ~ai(~)/~XJ, give

the gradients of the ourrent oonfiguratlon ~ with respect to the original con-

figuration ~, and show how the current configuration has evolved from the

initial configuration. The u
ij

relate the incremental vector d~ at the ini-

tial oonfiguratlon with the incremental veotor d; of the current configuration

as follows~

dxi = a dh .
l,j J

(3.3 )

1norement3 ‘alj
onn be oaloulated from du

ij ‘rem ‘})0 ‘quntion ‘aij - ‘lJlk(~k.j ‘
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which can be proved from the definitions above. Hence, these increments can be

integrated along the material process to give a(~+;) for any configuration ~.

Thus the total configuration is known, for every ❑ ass element and for every

time. Furthermore, it is possible to write equations for dae
iJ and %

separately, under the condition that a
ij - a:jai; “ ‘he ‘otal aij ‘ave ‘he

same meaning as before, but the component matrices u
e

and a~j have no inde-
ij

pendent physical meaning, because they do not commute, In other words, when

elastic and plastic strains are going on simultaneously, it 1s not possible

to integrate the atraina alcng the process to find separately the current

elastlc and plastic configurations in any objective sense. Some workersg

‘ave ‘Seal ‘he a:j and %
and given them the following interpretation. a~~

takes the initial configuration and applies a pure plastic strain which rear-

ranges the atoms btit does not generate any stresses. The resulting condition

13 thought of as an intermediate unloaded state.
‘hen’ ‘he % ‘trains are

applied which load the material elastically to the current stresses. This

scheme is wor4able, but the intermediate state has no objective physical

meaning. The maLerial as a whole cannot exist in this state without breaking

apart. To make the scheme work, one must think of the intermediate state as

existing for eaoh piece of material individually, not in connection with those

of the neighboring plooes. Other, d(fferent schemes for decomposing the total

10
strain into elastic and plaetlc purt are possible and all suffer from

similar problems.

He prefer to deal with the situation as follows. First, the incremental

‘trains %3 and %
are perfectly good differontlal variables for the

ooupled differential equations of a flow prooeas; these equationn oan still be
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integrated step by !3tep. However, we do not have the elastic configuration

available aa an integrated state variable. But the integrated stresses T
ij

oan serve as state variables for thermoelasticity. These and one other v&ri-

able, say S, completely specify a thermoplastic state, including the elastic

configuration. For the plastic strain, we will introduce a non-negative

scalar ❑ easure of the total plastic strain increment, and the integral of

this will provide a measure of the total strain which has occured in the

material.

The simplification of plastic strain is accomplished by the Prandtl-Reuss

approximation: it 1s assumed that plastlc strain increments are proportional

tc the corresponding stress deviators.
11,12

‘at ‘s’ d% - ‘ij
di, where di is

some scalar l~flniteslmal. To identify an effective plastic strain in d~, we

divide by the effective shear SLPSSH T, and write tho Prandtl-Reuss approxima-

tion a9

(3.4)

where d~ 1s the effective plastic stralrl increment. Wltll the Prandtl-Reuss

approximation, there is no volume change due to plastic strain, i.e. d lnV -P

‘%
= O, becaLse sii - 0. This property is in accord with the experimental

observation that plagtlo strain Is volume ‘onserving.

Another property of the effective plastic strain results from the physl-

oal nature of the prooess, nnmely Lh{lt plastlc strain 1s a stress-relaxlng

prooeaa. For any lnoremental process which occurs at constant total con-

flguratlon, i-e. dc = O, the set of )lastlc increments dcp must be such as
ij lj



35

to reduce the ❑agnii.ude of each and every s
ij”

With the Prandtl-Reuss ap-

proximation, this will be t,,e case if and only if d$ > 0. The simplest way

to show that d$ > C is to calculate the incremental plastic work done on a

❑ ass element. This is given by p dWp E T
ij % “

Thus, the plastic work is

work done by the stresses against the pla~tlc strains (there is no restriction

‘n ‘he ‘Otal ‘Eij ‘ere)” ‘ith ‘ij ‘epldced by ‘ij
- F6

ij ‘
and with the

Prandtl-Reuss approximation, the plastic work is

fl dWp - (3/4T) (Sij - %ij)sijd$ . (3.5)

From this it is seen that the mean compressive stress does no work in plastic

strain, because Sii - 0. With tho definition of ~, equation (3.1), the plas-

tic work becomes pdWp = 2rd+. Now in any ma~s element, plastic strain cannot

proceed in such a way as to do work on the surroundings.

have dWp > 0, and since ~ > 0, it !’O11OWS that d$ must be

Therefore. we must

greater or equal to

zero. This condition is not to be regarded aa a constrain;, because it

should be automatically satisfied in any correct calculation. As a result of

d~ > 0 for any mass eleme-t, the integrated plastic strain + is Q nondecreas-

lng function of time. As an infr’rmative exercise, one can prove, for a

process at constant total configuration, with the Pradtl-Reuss approximation

and with the approximation of s~all anlsotropy, that the magnitude of every

‘iJ
decreaeeg if and only if d$ > f).

With the Prandtl-Reuss approximation, tha oonstlt.utive behavior of’ a

solld is almost completely specified. It remains to specify the behavior of
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the effective shear stress T. This alone is an extremely difficult undertak-

ing, because of the complications of plastic flow behavior in real solids. We

will ❑erely try to list the variables which control the behavior of T, and

that for an isotropic solid only. The von Hises constant K is generalized to

a flow surface, ~.e. I still equals K, but K is no longer constant. K should

depend on the thermoplastic state, which for an isotropic solid is specified

by V and S. A dependence on pressure is implied here. In contrast to von

Mises’ original point of view, which neglects the dependence of K of ;, be-

cause ~ does not drive plastic flow, we may want to apply the theory at

pressures high enough to alter the material properties. Hence the-dependence——

on pressure is kept. The effect of work hardening is represented by d depei]d-

ence of K on the plastic strain +, and also K should depend on the plastic

atrainrate $, which is the Lagrangian time derivative of $, $ E ~$/~t]~ .

Hence in the plastic flow regeime, i.e. when $ > 0: 1 = K($,$,V,S). When the

effective shear stress is inside the flow surface, the plaztic flow ceaaea and

the solid is in the elastic regim~, with $ M O: T < K($,$,V,S). These two

equatians represent a common way of’ expressing the plastic constitutlve be-

havior of an isotropic solid. However, the relations are presumably unique,

which means invertible, and it is logically simpler to think of the plastic

atrainrate as the dependent variable. This approach also has better stability

properties for numerical calculations. Hence one can write the above two

equations together as the plastlc constitutive relation: $ - $(T,IJ,V,S) .

3. Constitutlve Relation for Heat Transport
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For ❑ost problems of thermoplastic-plastic flow in solids, the ~ropaga-

tion of thermal energy Is not important. Heat is generated locally, by

plastic dissipation, and the important process of heat transport 1s heat

conduction. With this approximation, the constitutive equation for heat

transport reduces to Fourier’s law of heat conduction:

~ = - k$T . (3.6)

This 1s consistent with an infinite velocity of propagation of heat which then

occurs by diffusion.

4. Irreversible Thermodynamics

Consider processes which are sufficiently close to equilibrium so that

the total center-of-mass energy U can be identified as the thermodynamical in-

ternal energy E. Then dE which equals dW + dQ is equal to dU. Wrjting dW as

the sum of elastic and plastic contributions then puts the energy equation in

the form

dU .(jwe+dwp+dQ. (3.7)

‘he key step in completing the irreversible thermodynamic description is the

ldent~ficatlon of the entropy production. Heat transport produces entropy dSK

P according to tl,e usual relation TdSK = dQ. Also, the plastic work 1s as-

sumed to be totally dissipated, so TdSK = dWp. The total is dSK + dSW , and

the energy equation reacts
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e
p ‘u - ‘ijdcij + ‘Tds “

(3.8)

With 2Td$ for the plastic work dUp, the total entropy increment is given by

p TdS = pdQ + 2~d$ . (3.9)

At this point, it is useful to make a list of the complete set of equations

which describe the irreversible-thermodynamic elastic-plastic flow process in

a solid.

Conservation of mass

Conservation of linear momentum

Conservation of energy

Entropy production

Stress tensor increments

Temperature increment

Plastic consitutive

Heat-transport consltutive

(2.1)

(2.2)

(3.8)

(3.9)

(2.17)

(2.18)

(3.6)

For most problems, this system can be simplified considerably. Further,

it is always pos~ible to eliminate the elastic strains dce
ij’

in favor of the

‘Otal ‘trains ‘Eij
and the plastic strain d$. This is done merely by writing

d% - ‘Eij - %’
and then using ihe Prandtl-Reuss approximation to repl:.ce

%
with d$. This is a useful step, because the equatiorls of motion deter-

‘nine ‘he ‘Otal ‘Eij”
Let us make a sketch of how the system of equations
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works in numerical calculat.,on. Suppose that all the field functions are

known in the current state {7,S). Given a time increment dt, we want to

evaluate the furl”tions at the next state (~ + d~,S + dS). The equations of

mot!on (coflservation of mass and momentum) give the increments dc
ij and ‘%

The plastic constitlltive equation gives d$ = $dt. Then the heat transport

equations and the entropy production equation give the total dS. With these

inc] ~mefits, tt,e changes in the internal energy, the stresses, and the tempera-

ture can bc calculated, and all the functions are then dstermineti in the text

state.

It should be emphasized that the present theory can also be used to ad-

vantage in analyzing experiments, For ❑ost experimental conditions, all the

material properties in the theory are reasonably well known, except for the

plastic constitutive behavior. Hence the complete set of equations, bogether

with a well-designed set of experimental measurements, ‘.:111 determine the

plastic! constltutivc behavior of a given solid. This procedure was used in

analyzinti nc’lsteady shock profiles, to determine the plastic behavior of an

aluminum alloy, ror plastic strains up to 5X, and for plastic strainrates up

to ,.7s-1 .

;.n ,Issigning the entropy production, it was assumed that the plastic work

la ,otally ~;sslpated. Experimental support for Lhis in metals goes back to

13 14the work Or Fdrren anti Taylor, and of Taylor and Qulr,,ley, who foun’ that

approximately 90% (jf the plastic work is dissipated, for ti:,’sins greater than

a few percent. f;~ibsequent res~mch on t,he energy stored in cold ~~ork~,ng was

1s
reviewed by Tichener &nd Bever. “hl:I stored eneray goes into the def?ut

structure or t!le solld, most nv’ JIJ the dislocation structure, and the energ~
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is in fact recoverable. However, this energy 1s not included in ordinary

thermoplastic theory, and an explicit accounting of it would require a

redefinliion of the thermoplastic quantities. For example, the presence of

stored energy will give rise to a negative contribution to the heat capacity,

which is strongly dependent on the heating rate, because of annealing. Hence

the assumption of total plastic dissipation, besides being a good approxima-

tion as far as the total plagtic work 1s concerned, also simplifies the

complete theory. In the same vein, the remaining thermoplastic coefficients,

namely the anlsotropic Gruneisen parameters and the stress-strain coeffi-

cients, are presumed to be independent of the defect structure introduced by

plastic flow. To the extent of the author’s knowledge, this is in accord with

experimental observation. On the other hand, the aignlficant effect of the

stored part of the plastic work, namely wovk hardening, is contained in the

theory, through the presence of the plastic strain $ in the plastic constltu-

tive equation. Finally, an observation can be made regarding experiments

designed to increase our understanding of high-strainrate processes in solids.

If one is studying a process in which tho temperature rise due to dissipation

is important, then a measurement of the temp~rature can be helpful in extract-

ing constltutive behavior from the experiment.

S. Application to lhIiaXlal Compreeslon in a Unlaxial Solld

The purpose of this section 1s to further illustrate the general theory.

The example of uniaxial flow is chosen because of its geometrical simplicity,

and also beoause it inoludes planar wave processes. The restriction to com-

pression is dono merely to avoid worrying about the sign of the shear stress:
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it 19 always positive In compression. The case of rarefaction, or tension,

requires changing a few signs in the equations of the first two sections.

While the general theory of the shock process is beyond the scope of this

❑onograph, the basic equations underlying recent prugress in shock theory are

constructed.

In a Cartesian coordinate system, material ❑otion is in the x-direction

only. For a given ❑ass element, the transverse surfaces do not move. A

subtle point arises immediately. For uniaxial compression, when plastic flow

occurs, ctoms actually move in transverse directions. ~ut this transverse

motion of atoms does not give rise to a net transport of mass, or a net momen-

tum, so the transverse motion is not seen in the continuum-ni.chanic equations

for corlservation of mass and momentum. The occurrence of plastic flow is ac-

counted for by the continuum variable $; the boundary conditions on the

material motion, in the present case that transverse surfaces do not ❑eve, are

instrumental in controlling the amount of plastic flow which takes place. The

same observations apply to continuum elastic-plastic flow in other geometries

as well.

For uniaxial flow, the flret step is to write down the simplified list of

continuum-meohanic variables. He let x be the laboratory

be the Lagr)angian coordinate, and v = ~x/8t. at constant

particle velooity. The transformation matrix 18 axx =

coordinate , X = Xa

X be the material or

ilx/aX]t and equala

palp. and a
aYY Zz ‘qual ‘ne and aij

- 0 for 1 not equal to j. No summation is

implied by repeated indioes x,Y, or z in the above. The aymmetrio infinites-

imal strains are dcxx - d lnV , w(~h all other dc M 0. The stress tensor
iJ



42

has only two ifldependent components, the normal compressive stress u, and the

shear stress T, where

~--~
xx ‘

(0 - 2T) - -T - - Tzz ,
YY

and‘ij = O for i not equal to j. The components o

compression. The T here ig the effective shear

and T are both

stress defined

(3.10)

positive in

earlier for

plastic flow. Also note there is no rotation in the case of uniaxial flow.

As a consequence, the elastic and plastic deoompostlon of a ij
mentioned ear-

lier can be done unambiguously in this case, i.e. the ae
lj and %

commute.

The Lagrangian equation (2.1) for conservation of mass reduces tc

(pa/p2)ap/at]x + av/ax]t - 0 ,

Conservation of linear momentum in Lagranglan form beoomes

Pa Wnlx + aonx]t - 0 .

(3.11)

(3.12)

To proceed to the thermoelastio equntlons, we need to find expressions

for the elaatlo and plaatlo components of strain, We will make repented usc

of the symmetry in y and z. Tho stress deviators follow from (3.10). u
xx ‘s

-4/3 T and nyy - 2/3 T. The Prandtl-Reuss approximation gives dc~x m - d$ and

dcp = 1/2 d+ . Tl]en solving tho total strain ln[’1’ements for tt](~ olnetic
YY
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parts gives dc~’ = d lnV + dv and dc~y = - 1/2 d$. Hence in uniaxial compres-

sion with plastic flow, there are only two independent strain ❑easures, which

we will take to be d lnV and d$. The energy equation now reduces to

(3.13)pdU = - Q d lnV -2~d$+pTdS,

and the entropy production is

pTdS = - (3.14)~J/ax]t dt + 21d$ .

The heat current J is in thf!

eliminated in favor of J,

tricky point should be noted

x-direction. The quantity of heat Q has been

since this generally simplifies computations. A

and remembered: elastic strain and plastic strain

are not e.eparately app arent in our equations, because they have been coupled

through the boundary condition. In (3.13), for example, the first two terms

on th~ right, involving both dlnV and d$, are Just the elastic work T
AJ’

An isotropic solid under biaxial elastic strain nas tetragonal symmetry.

The adlabatio stress-atraln caefflcients B~0 have the following symmetry:
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‘1 1 ’12 ’12

‘21 ’22 ’23

‘2 I ’23 ’22

’44 0
0

0 n ’66 0

0 0
’66

The coefficients B44 and B66 do not enter the equations for the stresses and

‘emperatue’ because % - 0 ‘or i ● ‘“
Voigt notation will also be used far

the anisotroplc Gruneisen parameters:
‘ij - ‘B”

The tetragonal symmetry is

accounted for by writing Yxx = Y, and Y and Yzz equal Y2.
YY

With these sym-

motrleo, the earlier equations for the stresses and the temperature are

evaluated to give

do = oYITdS - Blld lnV - (Bll - B12)cIY ,

d~ - 1/2 P(Y1 - Y2)TdS - 1/2 (Bll - B21)d lnv

- 1/2 (t311 + 1/21322 + 1/2~$3 - B12 - B21)d$ .

(3.15)

(3.16)
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rJT.- YIT d lnV - (Yl - Y2)Td$ + TdS/Cn . (3.17)

We have now written the set of equations for unlaxial flow. The energy

equation is uncoupled from the rest, and can be aiscarded. Further, whenever

the transport of heat can be neglected, then pTdS = 2Td$, and dS can be

eliminated from the set of equations. It was this latter set of equations,

with J = O, which was used to extract plastic constitutive data from weak-

shock profiles for an aluminum alloy.
16

Following that, it was possible to

calculate equation-of-state data from the shock measurements, explicitly ac-

17
counting for the nonsteady nature of the shock profiles. This proaedure gives

❑ ore accurate equation-of-state information than does tho cuatamary method of

using Hugonlot jump conditions for the shock analysis, since the jump condi-

tions hold only for steady waves.

We mention an interesting aspect of the weak-shock work. In such shocks

the strains, elastic or plastic or total, are small. They were less than 5%

in the work cited, This allowed the equations (3.15), (3.16), and (3.17) for

do, dT, &nd dT to be expanded in the atraln. Both elaatlo ana plastic strains

are of roughly the same magnitude in weak shooks and were considered to be

joint. expansion parameters In the expansion. Terms up to the seoond order were

kept. This proved to be

‘ijkl
were thus expressed

stants, both of whloh had

enough terms for the weak ahouks of’ intere~t. The

in terms of second and third order elaetlc oon-

been experimentally measured for the 6061T6 Aluminum

material investigated. Heat oonductlon was neglected w?loh is a good ap-

proxlmutlon for we~k shocks. Hence the entropy produatlon was due entirely to

the plastia workl pTdS - ~T d+. Since bo~h T and d$ are of first order (both



46

depend in a ‘linear” fashion on the expansion parameters), the entropy is of

second order. Hence in equation (3.15) for do, the term pYITdS can be replaced

by pYaTdS, where Ya 1s the zeroth order initial value, since TdS is already

of second order. Also, the the equation (3.16)

when terms of second order are kept, since

order. Thus the shear stress has only elastic

approximation.

6. Steady Shock in an Isotropic Solid

The ri9etime of weak shocks in metals

for d~, the TdS term disappears

the factor Y1- Yz is of second

contributions to this order of

is long, and the nonsteady wave

profile can be observed in detail with VISAR optical interferometric

teohnlques,
18

As the shock strength increases, the rlsetime decreases, until at

a hundred kbar or SO, the risetime can no longer be resolved. However, ag far

as it is known experimental.ly, a planar shock always travels at a constant

velocity. Henoe for moderately strong shocks, specifically for overdriven

shocks, one expects a shock to propagate as a steady wave. The steady-wave

condition allows the equations of motion to be integrated, which profoundly

simplifies the complete set of equations for the flow process.

The symmetry is that of uniaxial compression, as described in the last

aeoton. For any function of g(x,t) or g(X,t), the relations between

Lagrangian and Eulerian derivatives reduce to

ag/ax]t - (pa/p) ag/ax]t
n

?g/2t]x - ag/at]x + v agiax]t .

(3.10)

(3.19)
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A steady wave is a wave which travels at constant veloctiy without changing

its shape. By this we mean that for any ❑aterial property g(x,t), the graph

of g vs t through the wave profile is the same for all x. Hence g(x,t)

depends on only a single variable z, the !llaboratory steady-wave variables “ 2

-x -Dt, where D is the wave velocity. The steady wave conditon js g(x,t)

- g(z) . Partial differentiation yields ~8/3x]t = dg/dz and ~g/at]x = - D

dgldz . With (3.18) and (3.19) above, the Lagrangian derivatives are found

to be

ag/ax]t - (pa/p) dg/dz , (3.20)

& = ag/at]x = (v - D) dg/dz . (3.21)

As an exercise, one can prove, using conservation of mass, that the 9teady-

wave condition g(x,t) = g(z) implies, and is implied by, the condition g(X,t)

= g(Z), where Z - X - Dt is the Lagrangian steady-wave variable.

The stato ahead of the shook is assumed to be a thermodynamic equilibrium

state, characterized by zero partiole velocity v, zero normal stress o, and

zero heat cur’rent J. The state behind the shock 1s the Hugoniot state,

(tonoted by subscript. H, and it is also assumed to be a thermodynamic

equilibrium state so that JH - 0 . In the steady wave analysls, it 1s oon-

venlent to use the oompreeelon variable c defined by c = 1 - V/Va . In terms

of c, the equation for oons~rvation of mass 1s

aE/at]x + avlay]t - 0 . (3,22)
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With (3.20) and (3.21) above, and noting that Ca - 0, this integrates to

c-v/D. In the save

momentum integrates to 0 -

through the shock process

way, the equation (3.11) for conservation of linear

paDv . ‘The curve of normal stress vs compression

is called the Rayleigh line, and from the last two

equationa this curve is a straight line:

(3.23)

This equation holds for intermediate points in the wave ag well as for the

final condition of the wave. It is important to recognize that t!.c Rayleigh

line is a straighL line as a result of conservation of maas, conservation of

momentum, and the steady-wave condition; no more and no less.

The energy and entropv equations, (3.13) and (3.14), for uniaxial flow

are already in total differential form, except for the heat current term.

Wjth the ~’elatlons z - x - Dt, ag/ax]t o dg/dz, and IS - v/D, this term oan be

written, for a :teady wave,

-aJ/2x]t dt = pdJ/(paD)

Then the energy and entropy oquationa become

dU ~ aVadc + dJ/(paD)

(3.24)

(3.25)

TdS = dJ/(paD) + 2V~d$ . (3.26)
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Uith o replaced by paD2c and with the initial conditions Va - a= - J = o,
a

the integral of aU is

u- Ua = 1/2 D2C2 + J/(PaD) . (3.27)

The Hugoniot is the locus of equilibrium states behind shocks of varying

strengths; the Hugoniot exists for steady or nonsteady waves. The shock

velocity D serves as a parameter specifying the shock strength. The Hugoniot

jump conditions are the statements of conservation of mass, momentum, and

energy, across a steady-wave shock. From the preceding integrals of the equa-

tions of motic~l, the Hugoniot jump conditions for a given shcok velocity D

are

‘H - PaDv,! o

(3.20)

(3.29)

(3.30)

It is impolstant to remember that these conditons hold only for a steady wave.

Sinoe $H = 0,
‘he ‘hear ‘tress ‘H is presumably on the (atatlc) yield

surfaoe. If one sets ~H = O, as an aPPrJXifIIatiOnJ then aH beoomes the pres-

sure P
H’

and tha equations (3.28)-(3.30) beaome the Hugoniot jump conditions

for a fluid. For a fluid, th~ Hteady-k,qve Hugonlot can be oonstruoted from

the jump oondltions together ‘lth the equation of ~tate.
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As a result of the steady-wave condition, space- and time-dependence has

been eliminated from the equations uf ❑otion. This cannot be done for the

constitut’ve equations, in general, but the dependence can be reduced to the

single variable z. The heat conduction equation becomes

Jm- K dTldz ,

and the plastic constitutive equation becomes

(3.31)

(v - D) d$/dz = $(T,$,V,S) . (3.3?)

We can now make a list of the complete set of equations, called the Rayleigh-

line equations, which govern the steady shock process.

Rayleigh line

Entropy production

Normal stress

Shear stress

Temperature

Heat-transport constitutlve

Plastic oonstitutlve

(3.23)

(3.26)

(3.15)

(3.16)

(3.17)

(3.31)

(3.32)

In these equations, one can think of c as the independent variable, and

of course V is equivalent to c. The equations listed are seven equations in

the seven dependent variables, o,T,S,T,J,W, and z. Hence for any given D, the

steady shook proceaa oan be calculated from the seven equations. In fact, the
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set of equations can be reduced algebraically. With the equation far the

Rayleigh line itself, u is trivially eliminated from the set. Also, one can

use the energy equation to replace S ~y U, if this change of variables is

desired. The real space- and time-dependence of the process can be calculated

from z(c). For example, at a constant x, say x = O, t(c) = - z(c)/D, and at

constant t, say t = O, x(E) ❑JI Z(E) .

As a useful exercise, prove that dZ = (p/pa)dz. If z(c) is known, how

can you calculate t(E) at a constant X, and X(c) at a constant t?

Note that there are twcl rate-dependent processes going on simultaneously

in ~he shock, namely transport of heat, and plastic flow. At any point ill the

shock, the time-dependence of the profile must be simultaneously consistent

with both of the dissipative processeg. In other words, the shock rlgetime is

consistent with both ~rocesses at once.

‘(he above list of Rayleighrline equations was used for a detailed

19
analysis of the process of overdriven shocks in solids. In doing this, the

plastlc constltutive equation was purposefully removed from

grounds that it is a totally unknown quantity under such

With one equation removed from the set, it is still possible

the set, on the

shock conditions.

to learn a great

deal about the steady shock process, and to establish several theorems regard-

ing the existence of solutions. For metals, the theory predicts that the

shock rlsetime will decrease to around 10
-12

s, and will not decrease further,

20
as the shock strength i~creases. Finally note that for shocks stronger than

a feU Mbar in metals, irreversible thermody:~amics breaks down, and a new

theory has to be constructed.
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LECTURE IV-THE THERMODYNAMICSOF LJUCTILE FRACTURE

lie discuss a model for d.’ctile fracture in which the ❑aterial damage

proceeds through the creation &nd gr~wth of small, diffusively distributed

voids. This simplified model illustrates many of the general features in a

clearer way than a brittle fracture-crack model would. An example of such a

❑odel illustrating its complexity was given by Davison and Stevens
21

. Me will

give the g~r.eral thertnodynamical framework, with a few specific examples of

the coef-lcicnts involved in the framework. To the author’s knowledge, no

thoruugh, detailed treatment of this topic, either for ductile or brittle

frac~ure, 1s available. We describe the currently popular approximations and

d?l-tlons.

1. The Thermodynamical Framework

Ductile fracture of the kind we have in mind proceeds by the nucleation

under tension of small voids in the material uhich proceed to grow by plastic

flew in the material surrounding them. Since plastic flow is involved, we

will need the thermodynamical framework for plastic flow already developed and

will generalize it to include voids. It is experimentally observed that a

tension threshold exits within which no appreciable void growth or nucleation

occurs and beyond which these procegses proceed rapidly. The situation

resembles the yield threshold in plastic flow; which is to be expected since

plastio flow is the basic process in the growth of voids. Little is known

about the microscopic nucleation process, but lt probably has ~hlngs in common

with plastic flow. We note that in shock wave phenonmina, ‘the process of rapid
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ductile or brittle fracture has the name “span.” This has referent< to the

thin plates of material that are thrown or “spalled” off from the rear surface

of a plate when a shock wave reflects from the reap surface as a tensile wave.

The same general phenomina is going on here as In fracture at lower tensiors

and strainrates; only the magnitudes are dl~”ferent. Our thery will encompass

duc~ile fracture of both kinds.

As before, we consider infinitesimal deformations from an arbitrary,

stressed initial condition. For this reason, rotational frame invariance is

not always e:<plicit in our equations. One can consult References 22-24 in

which non-infintesimal deformations are used, to see how these appear in the

equations.

We will describe the voids by the macroscopic internal variable D, which

gives the void volume per unit volume in the unloaded situation. This variable

is a perfectly good state variable for describing the therm~dynamical equi-

librium con{!ition. D is ~n internal variable because there is no way

externally of controlling it and because the processes which change it are

much slower than the electron-phonon processes. For this reason, in a given

maturial st~te, D may w911 want to change to raise the system’s entropy. This

charige is described by ‘he constltutive reltik.ion for D.

The thermodynamic description of ductile fracture will il]volve adding D

to the prevl~us set of equatior)s for pla~tlc flow. The set of independent

e!TariaL~les now becomes c
lJ’

S, and D. The elastlc stra!n 1s thtit which occurs

upon loading the ini~ially unstressed, damaged material. It 19 important to

reallze that further void expansion occurs upon elastic loadlng that 1s not

included in D. This expansion should not be confun~d with D and does not make
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the definition of D amblguoua. The thermodynamic equations can be developed in

a fashion strictly analogous to that used to develop the plastic flow

equations. First, one takes all partials of’ the specific internal energy U to

obtain:

p ‘u - v% +‘Tds+‘dD (4.1)

where f is paU/aD and is analogous to a force. f shows how much reversible

energy is stored per unit increment of D. Thus fdD is work associated with dD

that is stored and not dissipated. This equation pertains to equilibrium

states of the material and does not explicitly include, nonequilibrium

processes or dissipation. We will discuss these aspects later when (IS is dig-

cussed.

We proceed to the second heirarcby of the thermodynamlcal scheme by

taking all possible partials of I T, and f, in turn. The result for d~ is
ij’ ij

e
‘Tij - ‘ijkldckl - ‘Tyljds + bijdD + ‘~;j

(4.2)

‘herebij is a(paU/&~j)/aD and can be thought of as a “stress-strain” coe~fi-

cient ‘or ‘Ti.j and ‘D”
the result for dT is

dT = - Ty dce + T dS/C -. gdD
lj ij n

(4.3)

where g 18 - 32U13S3D, and is a “Gruneisen parameter” f’or S and D. Thu result

for df 1s
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.,

df = (b
ij - ‘%.j + ‘ij

/(1 - D))dc;j - pgdS + BdD (4*4)

where B is a “stress-strain” coefficient for for df and dD. As before, we

break the hierarchy here and formally assume that all coefficients in the

equations (4.2) to (4.4) above are known, either from experiment or theoreti-

cal calculation.

In actual fact, not much at all 1s known about the coefficients as-

sociated with dD, v1,z. b ~j, B, fandg. Here is an area for future research.

It may prove that g is small because the thermal effects associated with dD

are small. In the spali treatments that the author is aware of,
25,22

all terms

in dD in the equationa for dT and dl
ij

are left out and the equation for df is

left out entirely.

We now consider nonequilibrium processes in whioh voids are being grown

and created. Until the span tension threshold is exceeded, D remains fixed

and no nonequllibrium procceses involving the growth or creation of voids

occur. When growth and creation are ocourlng, neighboring equilibrium states

in the process have entropy changes of dissipation associated with tll~~ growth

and creation, that are in addition to the entropy ohangoe of plastio flow and

heat flow. The extra entropy change 1s due to the di~alpated void work (-~ -

f)dD . We write

‘ds - ‘Q’T+ ‘ij d~!j+ FdD , (4.5)

where FdD 1s tho work dissipated by void growth. F must equal -P -f, which

oan be ae~n by conalderlng the total work (- ~)dD, done by the void expansion.



This work equals that dissipated, FdD, and that whict~ goes reveraably into

ternal energy, fdD. The result for F follows immediately. Our informat,
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in-

ion

about f comes from equation (4.4) for df, whose coefficients W(J optimistically

oonaldeved as known.

A common practice in actual calculations is to oonsider all the work of

dD to be dissipated, so that F equals - ~ and f is zero. A microscopic void

growth model of Johnson
25

has this property. The void growth 1s assumed to

involve ~ volume dilation, and all motion is due to plastic flow. Although

the tension inoreases during void growth, no elastic energy is 8tored because

no elastio strains occur. ‘In this case all the void work is dissipated be-

oause the plastic flow of void growth is all dissipated. However, a

thermodynamioal inoonsistenoy arises for stressed materials from this assump-

tion and the knowledge that void growth ohanges the elaatic moduli and the

stress-strain ooeffioients. (A material full of holes is softer and

stretohier, and so the bulk and shear moduli become smaller. ) Imagine loading

up a sample elastically at a given D. Then load up a sample similar but for a

different t). Sinoe the elastic constants are different between the two oaseb,

the re8ulant total energies muut differ. This ohows thnt f must be non-zero

for a atreaeed solid, bein~ more so the higher the straaa,

As an aside, we noto that this problem does not arise in our model for

the plastio flow, alnos we aasume Lhat the thermodynnmical state is completely

independent of the plaatio etrnin. The plastic strain onter,g in cnly a:] a

aouroe of heat. This 18 not strict.ly trut? in pruct.ioe, aa d!n(]uused ewllor,

mlnae a mmall p~rt of tha plaetiu work in r+evnroibly etored. Aa n oonBequanoc,

the atresu-otrain inorement rolntionohip should dopond eomewhat on p.lantln
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work. It does indeed do so in the plastic flow condition when the work hard-

ening associated with the stored plastic work allows a small increment in both

the elaatic strain and the stress during plastic flow. With no work hardening,

no such increments can occur no matter how large the plastic strain becomes.

It is in this sense that the stress-strain increment relationship during plas-

tic flow Is independent of the plastic strain.

We can write the total strain equation as

(4.6)

since the different kinds of Btrains are inflntesimally additive. We will

sketch at this point, how the above equations can be integrated to obtain the

oomplete thermudynamlcal history of the matenial during a process. (We assume

aa known all coef’fiecints in the equations for dl
lj ‘

dT, and df.) At any one

point one has knowledge of all quantltes and one wanta to find them for a

small step forward in time. First, the equations of moti~n, i.e. those for

oonsw”vatlon of mass and momentum, will tell one what the total strains and

relational strains are. Then the plaatic and void growth/creation constltu-

tive equntlons w1ll tell one what dcp
lj

and dD are. From these and equation

““6) ‘or “ij’ ‘no Cun calculate ‘% ‘
From f ,-~, and rlD one can calculate

the dlaaipated void work and add it to the dissipated plastic work and the

entropy inorease duo to heat flow and get dS, the totnl entropy increment. At

this point, ono kliowa all tho lncrementa oF th~ Indepondant variables, and can
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use them in the thermodynamical equations (4.1)-(4.4), to get the increments

of all other thermodynamical quantities.

2. Specific Examples

One needs a constitutive relation for the time rate of void

growth/creation, or for dD/dt. such a relation serves a role analogous to

that for plastic flow. Such constitutive relations are not understood as well

as those for plastic flow. The best ones available seem to be the ones

derived experimentally by the group at Stanford Research Institute.
26

Experiments were done in which materials were loaded to various levels of

stress for various times and then unloaded and sectioned to determine the den-

sity and distribution of voids. Our theory only recognizes the density and so

we will be concerned only with their results expresed in terms of this

quantity. They summarized their experiments with the following equations

R- h(a) - CN{exp[(o - uN)/o,l - II , (4.7)

(!),: -~A(d v(i) , (4.8)

where fi is the time rate of creation of new voids of volume vo per unit volume

of solid matter”. o ~ is a tensicn threshold belwti which no new voids grow,

while CN and u, are material parameters. fi 1s to be taken as O if the

(i)
threshold is not exceeded. Equation (4.8) gives the growth rate of volume v

Of void i. A(IJ) is given by CG(U - rJG)/CI,, where CG is a material parameter

and a. is a tension threshold for void growth, below whlchf(’) is zero. In
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the above a means (1/3) Tii, which is the “tension”. With ; defined to be the

average void size Xiv(i) /N, where the sum is over all voids surrounded by a

unit volume of solid material, we can make the identification D - N~/(1 + N;).

Finally, realizing that the total void volume per unit solid material changes

(i)
in time by both the growth of already present voids, 11% , and by the crea-

tion of new ones, ~v-, one can with a bit of algrebra arrive at a consittutive
u

relation for D:

~= (hvo+ 3AD/(1-D))(l ‘D)2 .

Finally we noLe that for void-damaged

coefficients In the conventional equations

a dependence on D. This dependence has not

9tres3ed state. Some approximations

(4.9)

material, all the thermodynamic

for plastic flow seen earlier have

been investigated for the general

exist for the case of an un-

stressed, isotropic material. We give the following estimates for the bulk

22
modulus B and the shear modulus IJ due to Davisson et al based on the work

27
of Budlanaky :

a.~o[l - (3/2)(1 -vo) D/ (1 ‘2vO) ] , (4.10)

M=uO [1 - (15/7)(1 -vo) D/ (’/ -5vO)] , (4.11)

wh~re B Bo, and V. - (1/Z)[(3Bo - 2Bo)/(3Bo + PO)] are the values of the
0’

modull for undamaged materials. These formulas are approxlmationa for small
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damage. Formulas for the thermal conductivity, the thermal expansion coeffi-

cient B, the isotropic Gruneisen parameter Y and the heat capacity are also

given by Budiansky. The thermal expansion coefficient for the damaged material

is the same as for undamaged material. For the damaged material, the heat

capacity per unit mass is said to be very close to that of the undamaged

❑aterial. The Cruneisen parameter for the damaged material can be derived from

B. 6, and Cv of the damaged material from the standard thermodynamic identity

Y = BB/C v. The formulas are only good for D less than .5 or so. However on

page 30, Reference 28 notes tl~at voided material becomes unstable in its mo-

tion for D much bigger than this, so perhaps the formulas will serve for most

practical cases,
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